检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于局部特征聚类损失和多类特征融合的面部表情识别
下载:
61
浏览:
373
王浩 栗永泽 方宝富
《人工智能研究》
2020年5期
摘要:
在真实世界中,每个个体对表情的表现方式不同.基于上述事实,文中提出局部特征聚类(LFA)损失函数,能够在深度神经网络的训练过程中减小相同类图像之间的差异,扩大不同类图像之间的差异,从而削弱表情的多态性对深度学习方式提取特征的影响.同时,具有丰富表情的局部区域可以更好地表现面部表情特征,所以提出融入LFA损失函数的深度学习网络框架,提取的面部图像的局部特征用于面部表情识别.实验结果表明文中方法在真实世界的RAF数据集及实验室条件下的CK+数据集上的有效性.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享