基于局部特征聚类损失和多类特征融合的面部表情识别
王浩 栗永泽 方宝富 ​
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王浩 栗永泽 方宝富 ​,. 基于局部特征聚类损失和多类特征融合的面部表情识别[J]. 人工智能研究,2020.5. DOI:.
摘要:
在真实世界中,每个个体对表情的表现方式不同.基于上述事实,文中提出局部特征聚类(LFA)损失函数,能够在深度神经网络的训练过程中减小相同类图像之间的差异,扩大不同类图像之间的差异,从而削弱表情的多态性对深度学习方式提取特征的影响.同时,具有丰富表情的局部区域可以更好地表现面部表情特征,所以提出融入LFA损失函数的深度学习网络框架,提取的面部图像的局部特征用于面部表情识别.实验结果表明文中方法在真实世界的RAF数据集及实验室条件下的CK+数据集上的有效性.
关键词: 面部表情识别;卷积神经网络;深度学习;局部特征
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。