检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于DNPE-SVDD的化工过程监控
下载:
59
浏览:
471
韩晓春 薄翠梅 易辉
《建模与系统仿真》
2018年7期
摘要:
针对化工过程中检测数据变量维数高、非线性与动态特性相结合的特点,而传统的线性降维算法不能提取局部结构信息和动态特性,提出了基于动态邻域保持嵌入–支持向量数据描述(DNPE-SVDD)算法的化工过程监控模型。结合DNPE在非线性降维和SVDD在异常点检测的优势,使用DNPE算法进行维数约减,对降维后的流形空间采用SVDD算法建立监控模型,通过Tennessee Eastman(TE)化工过程进行仿真研究,同时与DPCA、DNPE算法对比验证所提算法的性能,结果表明DNPE-SVDD能获得更高的故障检测准确率。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享