请选择 目标期刊

基于改进Apriori算法的问题模板无监督抽取方法 下载:34 浏览:393

柯文俊1,2,3 高金华1 沈华伟1,2 刘悦1 程学旗4 《中文研究》 2020年3期

摘要:
在面向限定领域的事实型问答系统中,基于模板匹配的问答是一种有效且稳定的方法。然而,现有的问题模板构建方法通常是在有监督场景下进行的,导致其严重依赖于人工标注数据,同时领域间可扩展性较差。因此,该文提出了一种改进Apriori算法的无监督模板抽取方法。对于限定领域问题样本,加入短语有序特征来挖掘频繁项集,将频繁项作为问题模板的框架词;同时,使用TF-IDF来度量模板的信息量,去除信息量小的模板;特别地,为了获取项数较长的模板,为Apriori算法引入了支持度自适应更新机制;最终,借助命名实体识别进行槽位识别,并组合框架词和槽,得到问题模板。实验表明,该方法可以在限定领域的问答数据集上有效挖掘问题模板,并取得了比基线模型更好的抽取效果。

基于相似消息的流行度预测方法 下载:56 浏览:399

高金华1,2 沈华伟1,2 程学旗1,2 刘悦1 《中文研究》 2018年11期

摘要:
社交网络中消息的流行度预测问题在很多应用领域都有着重要意义。传统的流行度预测方法包括基于特征的方法和基于点过程的方法。基于点过程的方法无法利用历史消息的信息,而基于特征的方法则使用一个统一的模型来对所有的消息进行预测,没有考虑消息的特异性。因此,该文提出了一种基于相似消息的流行度预测方法。对于待预测微博,我们从历史消息选取出与之最相似的前K条消息来进行预测。在计算消息相似度时,我们借助了文档建模领域的LDA模型来学习消息的表示。在数据集上的实验结果表明,该方法可以有效发现在传播模式上与待预测消息相似的历史消息,并在流行度预测任务上取得了比对比模型更好的预测效果。

基于相似消息的流行度预测方法 下载:52 浏览:451

高金华1,2 沈华伟1,2 程学旗1,2 刘悦1 《当代中文学刊》 2018年11期

摘要:
社交网络中消息的流行度预测问题在很多应用领域都有着重要意义。传统的流行度预测方法包括基于特征的方法和基于点过程的方法。基于点过程的方法无法利用历史消息的信息,而基于特征的方法则使用一个统一的模型来对所有的消息进行预测,没有考虑消息的特异性。因此,该文提出了一种基于相似消息的流行度预测方法。对于待预测微博,我们从历史消息选取出与之最相似的前K条消息来进行预测。在计算消息相似度时,我们借助了文档建模领域的LDA模型来学习消息的表示。在数据集上的实验结果表明,该方法可以有效发现在传播模式上与待预测消息相似的历史消息,并在流行度预测任务上取得了比对比模型更好的预测效果。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享