检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于动态RBF神经网络的广义电力负荷建模
下载:
84
浏览:
499
黄俊铭 朱建全 庄远灿
《电网技术研究》
2018年9期
摘要:
针对新形势下分布式电源对综合负荷特性的影响,提出一种基于动态径向基函数(radical basis function,RBF)神经网络的广义电力负荷建模新方法。利用动态RBF神经网络描述综合负荷功率的动态微分变化过程,可以深度揭示广义电力负荷的动态特性。利用状态估计误差对神经网络的权值进行动态更新,并对不满足持续性激励条件的神经元的权值进行限制,使所建立的动态RBF神经网络模型参数理论上可以收敛至最优值。分别应用仿真平台和实际系统数据进行测试,结果表明所提方法的有效性。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享