检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于同义词词林和预训练词向量的微调方法
下载:
48
浏览:
228
佘琪星1 王必聪1 刘铭1,2 秦兵1,2 王莉峰3
《中文研究》
2020年5期
摘要:
同义词挖掘是自然语言处理领域中的一个基础任务,而同义词对的判别是该任务的一个重要部分。传统两大类方法,基于分布式表示和基于模板的方法,分别利用了语料的全局统计信息和局部统计信息,只能在精确率和召回率中权衡。随着预训练词向量技术的发展,基于分布式表示的方法存在一种简单高效的方案,即直接对预训练好的词向量计算相似度,将此表示为语义相似度。然而,这样的思路并没有利用到现有的同义词对这一外部知识。该文提出基于《同义词词林》的词向量微调方法,利用同义词对信息,增强预训练词向量的语义表示。经过实验,该微调方法能很好地完成同义词对的判别。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享