请选择 目标期刊

基于神经网络的藏文正字检错法 下载:32 浏览:279

色差甲1 慈祯嘉措1 才让加1,2 华果才让1 《中文研究》 2020年9期

摘要:
在缺乏标注数据的条件下,该文将藏文正字检错任务视为一个分类问题:首先从语言学知识中构建音节混淆子集并给每个原句加噪,然后建立深层双向表征的BERT作为分类模型,最后为了证明该方法的有效性,构建两个基线模型和三种不同领域的测试集,实验结果表明,该方法的结果优于两个基线模型。该文方法在相同领域测试集上句子分类的正确率达到93.74%,不同领域测试集上也能达到83.6%。对错误音节的识别率为74.53%,同时对无错误音节的误判率只有2.30%。

基于循环卷积神经网络的藏文句类识别 下载:27 浏览:260

柔特1,2 才让加1,2 《中文研究》 2019年11期

摘要:
句子是语言的最小使用单位,句类识别是为了进一步细化句法和句义研究。由于藏文句尾通常没有特殊的标点符号来识别不同句类,因此这一藏文语言特性就变成了一大难题。该文提出了基于语境和功能特征为一体的句子用途分类方案。首先,该文介绍了文法中藏文句子分类及其特征。其次,收集了大量藏文句子并对其进行了人工标注。最后,采用循环卷积神经网络对藏文句类进行了自动识别。实验表明,该模型对藏文句类识别有较为显著的效果。

基于词性约束的藏文分词策略与算法 下载:28 浏览:327

才让卓玛1 才智杰2 《当代中文学刊》 2020年5期

摘要:
自动分词作为自然语言处理基础性的研究课题,一直被学术界所关注,随着藏语自然语言处理技术研究的不断深入,藏文分词也面临越来越多的挑战。该文通过分析藏文自动分词研究现状,提出基于词性约束的藏文分词策略与算法。相对于传统方法,该方法不仅能有效地预防和处理各类歧义现象,而且在藏文未登录词处理方面有较好表现。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享