检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于古汉语语料的新词发现方法
下载:
46
浏览:
254
刘昱彤
吴斌
谢韬
王柏
《当代中文学刊》
2019年3期
摘要:
新词发现,作为自然语言处理的基本任务,是用计算方法研究中国古代文学必不可少的一步。该文提出一种基于古汉语料的新词识别方法,称为AP-LSTM-CRF算法。该算法分为三个步骤。第一步,基于Apache Spark分布式并行计算框架实现的并行化的Apriori改进算法,能够高效地从大规模原始语料中产生候选词集。第二步,用结合循环神经网络和条件随机场的切分概率模型对测试集文档的句子进行切分,产生切分概率的序列。第三步,用结合切分概率的过滤规则从候选词集里过滤掉噪声词,从而筛选出真正的新词。实验结果表明,该新词发现方法能够有效地从大规模古汉语语料中发现新词,在宋词和宋史数据集上分别进行实验,F1值分别达到了89.68%和81.13%,与现有方法相比,F1值分别提高了8.66%和2.21%。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享