初中数学教学中数形结合思想的应用探析
孙淑君
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

孙淑君,. 初中数学教学中数形结合思想的应用探析[J]. 数学应用,2023.11. DOI:10.12721/ccn.2023.157351.
摘要:
数形结合思想的应用不仅能提高学生的数学思维和解题能力,还有助于培养学生的几何直观感受力和创造性思维能力。因此,将数形结合的理念应用到初中数学教学中,有助于学生厘清数学的特定思维,明确数学教学的现实指导意义。数形结合一方面可以减轻数学学科教学困难,提高学生学习数学的积极性,另一方面可以优化概念教学、应用教学等教学环节,提升教学的品质,更好地培育学生的数学核心素养。
关键词: 初中数学;数形结合思想;应用
DOI:10.12721/ccn.2023.157351
基金资助:

引言

在初中数学教学中,数学思想方法是比较重要的学习内容,而数形结合能有效地提高学生数学学习能力,提升学生的数学学习效率。教师为了培养学生的创新能力和思考能力,应深刻理解数形结合思想方法的内涵,并结合这一新颖的教学理念,从不同角度实施数形结合教学,为学生的学习提供帮助。

1初中数学教学中数形结合思想的应用的意义

1.1有利于调动学生学习的积极性

将数形结合的思想运用到初中数学教学中,可以有效地调动学生的学习积极性,培养学生的数学学习兴趣。首先,通过运用数形结合,能使学生更好地明确课堂教学内容知识,从而加强学生对数学知识的学习和理解。其次,通过运用数形结合的方法,能指导学生有效地梳理自己的数学思维,发挥他们的主体性,提高他们的数学学习效率。在此基础上,学生学习压力与困难减少,会减轻对数学学习的抵触,并能在解题成就感的推动下积极参与数学学习。

1.2能提高学生的应用意识和创新能力

通过数形结合思想将抽象问题转化为形象直观的问题,能激发学生对具体问题的研究兴趣,使他们的思维不仅能从数过渡到形,而且能从形过渡到数,从而培养他们的观察能力、抽象能力和创新意识。而运用数形结合思想引导学生从形象思维向抽象思维转化,有利于培养学生的创造性思维。学生通过数形结合思想能很好地把代数方法和几何方法联系起来,从而掌握解决问题的多种方法,锻炼他们创造性思维能力和解决问题能力。

1.3能提高数学教学效率

在初中数学教学过程中,运用数形结合,可以有效地提高数学教学效率。具体地说,运用数形结合理念,能够优化整个教学过程,进而对数学的概念教学、应用教学等进行优化,提高整体教学效率。同时,数形结合方法在一定程度上能够简化教学内容,从而减少教师的教学难度和学生的学习难度,同时可以提高学生的学习自信心和探索的兴趣,进而对重难点知识进行突破。在此基础上,通过优化教学方法,可以提高课堂教学效率。

2初中数学教学中数形结合思想的应用策略

2.1优化课堂导入环节,引入数形结合思想

随着社会的快速发展,传统的教育模式已经不能适应新时代的需求,数形结合思想与信息化的教育方法相结合,能提高学生对数学学习的兴趣。由于学生学长期接触大量的数据知识很难专心致志,容易产生心理和视觉上的疲劳感,在下午的时候容易出现发困现象,因此,教师在数学课上利用数形结合的思想进行教学导入,引导学生在学习时立足具体的课题内容,清晰地理解数学知识,有助于让学生的学习变得更加有趣,对本堂课的知识有一个大致的理解,思维更加清晰,从而提升学生的学习专注力。在学习与三角形有关的知识时,基于本章节学习三角形的知识内容需要打下良好的基础,因此,在课前导入环节,教师在电子白板上利用数形结合的方式绘制了不同的三角形,使学生能够通过课件了解三角形边角关系、平面几何图形中的几何形态问题等等。同时,教师还鼓励学生以小组为单位和同伴一起动手操作,体验和思考三角形相关线段的变化规律,在教学过程中利用几何画板和动画演示的形式进行实验。这种有趣的数学实验能够帮助学生养成灵活的分析能力,实现对“三角形三边关系”的判断和把握,从而利用不等关系解决实际问题。课前导入环节中的数形结合应用,需要教师采用观察图形的形式,鼓励学生仔细分析回答导入环节中的问题,尝试准确描述三角形的定义等等。

2.2以形变数,化繁为简

“数缺形时少直觉,形少数时难入微。”作为贯穿初中数学教学的一大思想,数形结合将“数”与“形”融为一体,形成了不可分割的内在联系。通常而言,教师要想将数形结合思想深刻融入教学,就要寻找“数”与“形”相互衔接的切入点,从而实现思想的有效过渡。在实际教学过程中的数形结合点主要有以下两种。第一,用数值量化图形。利用简单数值量化几何图形是数形结合思想的典型体现,适用于较为基础的几何运算以及应用类问题。第二,用几何量化图形。相比于数值,几何量在呈现方式上更委婉含蓄,更倾向于考查学生对隐性条件的转化与理解能力。在缺乏具体数据支撑、几何量复杂多样的解析几何题目中,学生往往会因题目条件的冗杂而生畏,降低了原有的学习效能感。但事实上,面积、距离、角度等几何量与分数、整数等数值并无本质上的差别,教师应帮助学生打破心理屏障,正确认识几何量的本质,从而高效解答几何难题。

2.3灵活应用数形结合思想

教会学生如何拥有快速解题的思维是数学教学的重要目标之一,培养解题思维重于让学生单一地背诵各种概念和公式。在实际教学中,方法大于内容,教师应该将更多的关注点放在如何帮助学生养成解题思路上,而数形结合思想对数学的学习是非常有用的,教师在教学时要将这一思维能力融入到教学过程中。当然,教师在运用数形结合思想的过程中也不能过于随意,还是要根据实际情况正确判断是否应该运用。教师要有自己精准的判断能力,例如在常用逻辑用语这部分内容的学习中,如果教师运用数形结合思想不仅不能帮助学生解决问题,反而会让学生陷入错误的解题思路中,这将浪费学生的学习时间和精力,无益于学生学习效率的提升。因此,教师在数学教学过程中要合理地运用数形结合思想开展教学。

2.4注重数形结合思想的实践操作,增强学生的实际应用能力

明确理论是学生进入学习的前提,实践应用是学生消化理论知识的必要环节。在初中数形结合思想应用过程中,无论是基础简单的数学内容还是复杂的图形探究或函数关系问题,教师都要鼓励学生进行思考、探究与实践,化复杂为简单,化整体为分层,从而实现学生数学综合能力的全面提升。第一,应用数形结合思想,提升学生对问题关系的观察能力。数形结合思想要求学生在学习的过程中要做到对数学知识点中“数”与“形”的有效结合,而有效结合的前提即是要有较好的观察问题的能力。因此,奠定好数形结合思想的基础,也是提升学生对实物观察和探究的能力。第二,应用数形结合思想,提升学生的逻辑思维能力。数学一直以来都是一门具有较强逻辑性的课程,将数形结合的思维应用到数学当中,可以更进一步促进学生思维活跃与清晰。教师可以创设一些具有数形结合思想且具有较强逻辑性的题型,不仅可以减轻学生对数学学习的排斥感,而且还能有效锻炼和培养学生养成一种数形结合思想上的逻辑思维,可帮助其在后期的学习中远离呆板思考呆板做题的学习模式,养成一种灵活科学而又高效的数学思维能力。

结语

很多学生在进入初中后容易出现数学学习困难的情况。此时数形结合思想就给学生突破学习上的难点提供了出路。教师在教学当中应引导学生把握“数”和“形”之间的契合点,引导学生通过思考建构数学思维,学会运用数形结合思想解决问题。

参考文献

[1]王英.浅谈初中数学教学中数形结合思想的应用策略[J].试题与研究2020(1):135—136.

[2]杨建珍.基于初中数学教学中数形结合思想的应用探析[J].科学咨询2020(33):87—88.

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。