基于卡尔曼粒子滤波算法的锂电池SOC估计
夏飞1 王志成2 郝硕涛3 彭道刚1 余贝丽4 黄毅敏1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

夏飞1 王志成2 郝硕涛3 彭道刚1 余贝丽4 黄毅敏1,. 基于卡尔曼粒子滤波算法的锂电池SOC估计[J]. 建模与系统仿真,2020.2. DOI:.
摘要:
基于UTS分容柜所测得的实验数据,建立了18650锂电池的三阶Thevenin模型。将扩展卡尔曼滤波算法(Extened Kalman Filter,EKF)作为粒子滤波算法(Particle Filter,PF)的重要密度函数形成了扩展卡尔曼粒子滤波算法(Extened Kalman Particle Filter,EKPF)。对于EKPF算法在重采样过程中存在的样本退化、多样性丧失的问题,提出了一种通过权值排序的优胜劣汰粒子选择算法。采用通过该方法改进的EKPF算法对所建立的三阶Thevenin模型进行电池荷电状态(State of Charge,SOC)估计,实验结果表明,改进EKPF算法的SOC估计精度优于EKF算法和PF算法的SOC估计精度。
关键词: SOC(State of Charge)估计;改进EKPF算法;重采样;权值排序
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。