多精英采样与个体差分学习的分布估计算法
喻飞1 吴瑞峰2 魏波2 张应龙1 夏学文1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

喻飞1 吴瑞峰2 魏波2 张应龙1 夏学文1,. 多精英采样与个体差分学习的分布估计算法[J]. 建模与系统仿真,2020.7. DOI:.
摘要:
提出了基于多精英采样和差分搜索的分布估计算法EDA-M/D (Estimation distribution algorithm based on multiple elites sampling and individuals differential search)。EDA-M/D利用多精英个体独立采样生成子代来提升算法全局搜索能力,利用精英群体分布的σ2约束采样半径,实现种群从全局搜索逐步过度到局部搜索。当精英群体停滞时,劣势个体借助精英群体的?和种群历史最优解进行差分搜索,帮助种群跳出局部最优解。通过多精英采样与差分搜索的自适应协同实现种群宏观信息与个体微观信息的有机融合。实验结果表明EDA-M/D在稳定性和搜索能力方面均表现出明显的优势。
关键词: 分布估计算法;多精英采样;差分搜索;基因修复
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。