面向在线智慧学习的教育数据挖掘技术研究
刘淇1 陈恩红1 朱天宇1 黄振亚1 吴润泽1 苏喻2 胡国平2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

刘淇1 陈恩红1 朱天宇1 黄振亚1 吴润泽1 苏喻2 胡国平2 ,. 面向在线智慧学习的教育数据挖掘技术研究[J]. 人工智能研究,2018.1. DOI:.
摘要:
随着教育信息化进程的深入,学生在线学习数据得到不断积累,为数据驱动的教育评估和智能辅助教学提供良好条件.然而,已有的面向在线智慧学习的教育数据挖掘模型很难从海量、稀疏、高噪的数据中准确分析试题特征和学生学业水平,也较少考虑学生及教师的个性化需求.文中针对上述问题开展若干面向在线智慧学习的教育数据挖掘技术研究工作,以教育学习所涉及的试题、学生、教师为对象,以个性化推荐等技术同教育领域知识相结合为手段,以提高学生学业水平为目标.具体介绍用于试题分析和检索的试题文本表征模型、基于认知诊断的个性化学习资源推荐方法、针对教师的教学建议和指导等方法,以及这些技术所依托的应用平台——科大讯飞在线教育系统"智学网".最后简单讨论面向在线智慧学习的教育数据挖掘技术未来可能的研究方向.
关键词: ​在线智慧学习;教育评估;认知诊断;推荐系统
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。