检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
基于多图核的迁移学习方法
DOI:
,
PDF
,
下载:
42
浏览: 322
作者:
江悠 张道强 张俊艺
;
作者单位:
南京航空航天大学计算机科学与技术学院
;
关键词:
脑网络;图核;多中心数据;多源域迁移学习;多核学习
;
摘要:
医学数据标注成本高昂,不同研究中心提供的脑影像数据间存在分布差异,无法有效整合,影响预测模型性能.针对此问题,文中提出基于多图核的迁移学习方法,将不同的图核用于挖掘脑网络结构信息并衡量脑网络间的相似性.提出多核学习框架,提高迁移模型的性能.在自闭症谱系障碍(ASD)多中心数据集上验证文中方法可有效利用脑网络数据的结构信息.多核学习框架也可综合不同图核的优点,进一步提高方法在脑网络数据上的分类性能.
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库