求解大规模问题的多核学习正则化路径算法
王梅1 李董1 孙莺萁1 宋考平2,3 廖士中4
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王梅1 李董1 孙莺萁1 宋考平2,3 廖士中4 ,. 求解大规模问题的多核学习正则化路径算法[J]. 人工智能研究,2018.2. DOI:.
摘要:
多核学习在处理异构、不规则和分布不平坦的样本数据时表现出良好的灵活性和可解释性.针对精确正则化路径算法难以处理大规模样本数据的问题,文中提出正则化路径近似算法.根据采样分布函数进行抽样,在原始核矩阵的基础上生成近似矩阵,同时在拉格朗日乘子向量中抽取对应行,实现矩阵乘积的近似计算,提高多核学习正则化路径的求解效率.最后分析多核学习正则化路径近似算法的近似误差界和计算复杂性.在标准数据集上的实验验证文中算法的合理性和计算效率.
关键词: 多核学习;正则化路径;矩阵近似;Monte Carlo方法
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。