邻域粗糙集的加权依赖度及其启发式约简算法
徐波1,2 张贤勇1,2 冯山1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

徐波1,2 张贤勇1,2 冯山1,. 邻域粗糙集的加权依赖度及其启发式约简算法[J]. 人工智能研究,2018.5. DOI:.
摘要:
邻域粗糙集是数值型属性数据处理的有效工具.基于邻域粗糙集,传统依赖度及其约简未考虑邻域覆盖的绝对结构,由此文中建立加权依赖度及其启发式约简算法.首先,提出加权依赖度并得到其度量改进性与粒化单调性,定义相关的属性约简.然后,分析邻域半径的自适应取值,构造基于加权依赖度的启发式约简算法(NWDR).最后,在UCI数据集上进行对比实验,验证加权依赖度的单调性与NWDR的有效性.实验证明,加权依赖度改进传统依赖度的不确定性表示能力,NWDR具有较高的分类准确率与较强的应用适应性.
关键词: 邻域粗糙集;加权依赖度;属性约简;启发式约简算法
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。