基于特征选择与时间一致性稀疏外观模型的目标追踪算法
张伟东 赵建伟 周正华 曹飞龙
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

张伟东 赵建伟 周正华 曹飞龙 ,. 基于特征选择与时间一致性稀疏外观模型的目标追踪算法[J]. 人工智能研究,2018.5. DOI:.
摘要:
为了更有效利用追踪目标的判别特征信息,提高目标追踪的精度和鲁棒性,在粒子滤波追踪框架下提出基于特征选择与时间一致性稀疏外观模型的目标追踪算法.首先,采集目标的正负模板和候选目标,根据特征选择模型对正负模板和候选目标进行特征选择,去除多余的干扰信息,得到关键的特征信息.然后,利用正负模板和候选目标的特征建立多任务稀疏表示模型,引入时间一致性正则项,促进更多的候选目标与先前帧的追踪结果具有稀疏表示的相似性.最后,求解多任务稀疏表示模型,得到判别稀疏相似图,获取每个候选目标的判别分,根据目标追踪结果更新正负模板.实验表明,即使在复杂的环境下,文中算法仍然比其它一些追踪算法具有更高的准确性.
关键词: ​目标追踪;稀疏表示;特征选择;时间一致性
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。