回归核极限学习机的多标记学习算法
王一宾1,2 程玉胜1,2 何月1 裴根生1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王一宾1,2 程玉胜1,2 何月1 裴根生1 ,. 回归核极限学习机的多标记学习算法[J]. 人工智能研究,2018.9. DOI:.
摘要:
基于极限学习机(ELM)的多标记学习算法多使用ELM分类模式,忽略标记之间存在的相关性.为此,文中提出结合关联规则与回归核极限学习机的多标记学习算法(ML-ASRKELM).首先通过关联规则分析标记空间,提取标记之间的规则向量.然后通过提出的多标记回归核极限学习机(ML-RKELM)得出预测结果.若规则向量不为空,将规则向量与预测结果运算得出最终预测结果,否则最终结果即为ML-RKELM的预测结果.对比实验表明MLASRKELM与ML-RKELM性能较优,统计假设检验进一步说明文中算法的有效性.
关键词: 多标记学习;极限学习机(ELM);标记相关性;关联规则;回归拟合
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。