基于函数型数据时间序列建模的单传感器日常行为识别
苏本跃1 郑丹丹2 盛敏3
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

苏本跃1 郑丹丹2 盛敏3 ,. 基于函数型数据时间序列建模的单传感器日常行为识别[J]. 人工智能研究,2018.12. DOI:.
摘要:
在基于惯性传感器的人体行为识别中,传统算法常忽略行为的周期性与时序性,对提取特征的滑动窗口大小也有相应要求.文中基于单个腰部传感器分析人体日常行为,提出面向周期行为的函数型数据分析方法和隐马尔可夫模型结合的行为识别算法.首先,使用函数型数据分析方法,拟合周期性日常行为的动作捕捉数据,提取拟合后的单个周期数据.然后基于此周期时间序列数据建立描述各个日常行为过程的隐马尔可夫模型.最后,使用最大似然估计判别行为,得到识别结果.该算法通过单个腰部传感器即可快速有效地识别8种日常行为,在基于用户依赖策略和用户独立策略时识别率较高.
关键词: ​人体行为识别;可穿戴式动作捕捉系统;函数型数据分析;隐马尔可夫模型;单传感器
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。