基于混合改进GSO与GRNN并行集成学习模型
简书强1 倪志伟2 李敬明3 朱旭辉2 倪丽萍2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

简书强1 倪志伟2 李敬明3 朱旭辉2 倪丽萍2 ,. 基于混合改进GSO与GRNN并行集成学习模型[J]. 人工智能研究,2019.6. DOI:.
摘要:
针对萤火虫群优化算法(GSO)不稳定、收敛速度较慢与收敛精度较低等问题和广义回归神经网络(GRNN)的网络结构导致预测误差的特性,提出基于混合改进萤火虫群算法与广义回归神经网络并行集成学习模型,应用于雾霾预测.首先构建融合多种搜索策略的混合改进萤火虫群优化算法(HIGSO),并使用标准测试函数验证算法性能.然后结合HIGSO与引入扰动因子的GRNN模型,建立并行集成学习模型,并通过UCI标准数据集验证模型的有效性与可行性.最后将模型应用于北京、上海和广州地区的雾霾预测,进一步验证模型在雾霾预测中的性能.
关键词: 混合改进萤火虫优化算法;广义回归神经网络(GRNN);扰动因子;雾霾预测
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。