语义自编码结合关系网络的零样本图像识别算法
林克正 李昊天 白婧轩 李骜 ​
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

林克正 李昊天 白婧轩 李骜 ​,. 语义自编码结合关系网络的零样本图像识别算法[J]. 人工智能研究,2019.7. DOI:.
摘要:
为了解决零样本图像识别中传统模型容易出现投影域移位问题以及提高距离相似度度量的鲁棒性,提出关系网络改进语义自编码器的零样本识别算法.基于语义自编码器构建图像视觉特征和语义向量之间的特征映射,并将重构向量与对应向量真值进行级联后送入神经网络,最终利用输出的标量给出预测类别.实验表明,相比传统距离度量方法,文中算法在AWA、CUB和Image Net-2数据集上的识别率均有所提高,在某些数据集上语义-视觉的投影效果优于反向投影.
关键词: 语义自编码器;关系网络;零样本识别;语义向量;投影域移位
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。