基于字符级截断式循环神经网络的人名国籍识别
张钰莎1 张礼明2 蒋盛益2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

张钰莎1 张礼明2 蒋盛益2 ,. 基于字符级截断式循环神经网络的人名国籍识别[J]. 人工智能研究,2019.8. DOI:.
摘要:
人名是反映用户国籍的关键信息,不同国籍的人名在结构和组成成分方面存在差异性和关联性.目前,基于人名的国籍识别研究工作大部分将人名切分成多个独立的字符单元,忽略字符间微妙的搭配和序列关系.针对上述问题,文中提出基于字符级截断式循环神经网络的人名国籍识别模型,将人名通过滑动窗口的方式截断成多个子序列,利用长短期记忆单元模型学习不同子序列内部的字符组合关系,通过平均池化操作聚合所有子序列信息,获取最终的人名向量表示.最后根据该人名向量实现用户的国籍识别.截断式的子序列有利于模型更关注人名内部的细微差异.在Olympic运动员和Aminer学者数据集上的实验表明,文中模型性能较优.
关键词: 国籍识别;用户画像;字符级表示模型;循环神经网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。