基于稀疏化双线性卷积神经网络的细粒度图像分类
马力1 王永雄2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

马力1 王永雄2,. 基于稀疏化双线性卷积神经网络的细粒度图像分类[J]. 人工智能研究,2019.8. DOI:.
摘要:
针对双线性卷积神经网络(B-CNN)在细粒度图像分类中因参数过多、复杂度过高而导致的过拟合问题,提出稀疏化B-CNN.首先对B-CNN的每个特征通道引入比例因子,在训练中采用正则化方法对其稀疏.然后利用比例因子的大小判别特征通道的重要性.最后将不重要特征通道按一定比例裁剪,消除网络过拟合,提高关键特征的显著性.稀疏化B-CNN属于弱监督学习,可实现端到端训练.在FGVC-aircraft、Stanford dogs、Stanford cars这3个细粒度图像数据集上的实验表明,稀疏化B-CNN的准确率高于B-CNN,也优于或基本接近其它通用的细粒度图像分类算法.
关键词: 细粒度图像分类;双线性卷积神经网络(B-CNN);过拟合;网络稀疏;网络剪枝
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。