基于PST相位约束和稀疏表示的MS和PAN影像融合算法
王相海1 白世夫1 李智1 宋若曦2 陶兢喆2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王相海1 白世夫1 李智1 宋若曦2 陶兢喆2 ,. 基于PST相位约束和稀疏表示的MS和PAN影像融合算法[J]. 人工智能研究,2019.11. DOI:.
摘要:
在基于多光谱(MS)影像和全色(PAN)遥感影像融合中,提高融合影像质量的一个关键问题是如何有效提取PAN影像的纹理特征信息,并有针对性地对MS影像进行信息注入.因此,文中提出基于相位拉伸变换(PST)相位约束的MS和PAN影像稀疏融合算法.首先对MS和PAN影像进行高斯滤波.对于中低频信息,基于PST相位差对影像中边缘和纹理区域的敏感性,通过高频信息PST的相位差获得融合权重约束.对于高频信息,通过学习PAN影像的高频信息获得训练字典,并利用字典对MS和PAN影像的高频信息进行稀疏表示和融合,提高融合高频信息的准确度.算法在一定程度上克服传统融合方法对边缘纹理区域融合效果较差和光谱信息扭曲等现象,取得更好的融合效果.大量仿真实验验证算法的有效性.
关键词: 遥感影像;相位拉伸变换(PST);稀疏表示;高斯滤波;高频信息;中低频信息
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。