基于IPSO神经网络的风电机组主轴状态监测
罗勇
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

罗勇,. 基于IPSO神经网络的风电机组主轴状态监测[J]. 能源学报,2018.5. DOI:.
摘要:
风电机组主轴是叶轮和齿轮箱的连接部分,在机组传动链中具有传递转矩和能量的作用,因此对主轴进行状态监测关系到风电机组的稳定性。将改进粒子群算法(IPSO)与BP神经网络相结合构造主轴温度模型并进行预测。当主轴发生故障时,模型输入的观测向量发生异常变化,导致模型预测残差发生改变。为提高主轴异常预警的灵敏度和可靠性,文中采用基于莱依特准则的双滑动窗口对预测残差序列进行实时的统计分析,如果残差均值或标准差超出设定的故障报警阈值时,发出报警信息。
关键词: 主轴;状态监测;IPSO-BP网络;莱依特准则;双滑动窗口
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。