基于DeepLab的物体部件分割网络
赵霞 倪颖婷 ​
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

赵霞 倪颖婷 ​,. 基于DeepLab的物体部件分割网络[J]. 人工智能研究,2020.6. DOI:.
摘要:
针对现有部件分割精度较低、泛化性和精度无法兼顾等问题,文中提出基于DeepLab的物体部件分割网络(DeepLab-MAFE-DSC).网络的编码器部分提出多尺度自适应形态特征提取模块(MAFE),利用可形变卷积增强模型对不规则轮廓的处理能力,并采取先级联再并行相加的采样模式,兼顾全局和局部信息.解码器部分设计基于跳跃式架构的解码器模块(DSC),同时连接深层的语义信息和浅层的表征信息.在数据集上的实验表明,DeepLab-MAFE-DSC具有简单、分割精度较高、泛化性较强的优点.
关键词: 卷积神经网络;物体部件分割;可形变卷积
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。