隐高斯树的分层合成——一种基于信息论解决合成问题的方法
Ali Moharrer1 魏双庆1 骆源2,3
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

Ali Moharrer1 魏双庆1 骆源2,3,. 隐高斯树的分层合成——一种基于信息论解决合成问题的方法[J]. 信息通信与技术,2018.2. DOI:.
摘要:
文章基于高斯分布提出一种信息论的启发式合成方法:根据给定的联合密度,研究产生随机向量的机制,从而引出(隐)高斯树结构;依赖于已知的树结构,构造分层的连续的合成方案,达到使用足够数量的公共随机变量来合成希望密度的研究目的。算法中所使用的公共随机源由树顶层的隐变量、独立可加性高斯噪声、以及表达变量之间模糊性的伯努利符号三部分组成。文章所提出的方法不但可以揭示数据隐含的内部联系,而且适用于在机器学习领域中产生仿真数据。
关键词: 信息论隐高斯树随机向量合成公共信息连续合成
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。