基于补充的集合经验模态最优降噪整形算法
董宝伟1 钱秋亮1 邵馨叶1,2 邵建龙1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

董宝伟1 钱秋亮1 邵馨叶1,2 邵建龙1,. 基于补充的集合经验模态最优降噪整形算法[J]. 数据与科学,2020.7. DOI:.
摘要:
为了准确提取噪声干扰的脉冲信号,本文基于补充的集合经验模态分解的最优降噪整形算法,算法基于固有模态函数构建不同的带通滤波器和方波整形,并依据均方误差、线性相关度和目标函数值指标来建立最优降噪整形算法的判断指标。采用脉冲信号、调幅调频信号和高斯白噪声信号合成数值模拟信号进行仿真实验,本算法能够准确地提取脉冲信号,表明数值模拟仿真实验成功,可应用于提取受噪声干扰的单位脉冲信号。
关键词: 脉冲信号补充的集合经验模态分解(CEEMD)带通滤波最优降噪整形算法
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。