基于多特征融合编码的神经网络依存句法分析模型
刘明童 张玉洁 徐金安 陈钰枫
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

刘明童 张玉洁 徐金安 陈钰枫,. 基于多特征融合编码的神经网络依存句法分析模型[J]. 当代中文学刊,2018.10. DOI:.
摘要:
在基于神经网络的依存句法分析中,对分析栈和决策层信息的表示和利用依然有值得深入研究的空间。针对分析栈的表示,已有工作并没有对单棵依存子树独立编码的表示,导致无法利用各个依存子树的局部特征;也没有对生成的依存弧序列进行编码,导致无法利用依存弧的全局信息。针对决策层的表示,已有工作利用MLP预测转移动作,该结构无法利用历史决策动作的信息。对此,该文提出基于多特征融合编码的神经网络依存句法分析模型,基于依存子树和历史生成的依存弧表示分析栈,利用TreeLSTM网络编码依存子树信息,利用LSTM网络编码历史生成的依存弧序列,以更好地表示分析栈的局部信息和全局信息。进一步提出基于LSTM网络的结构预测转移动作序列,引入历史决策动作信息作为特征辅助当前决策。该文以汉语为具体研究对象,在CTB5汉语依存分析数据上验证所提出的多特征融合编码的神经网络模型。实验结果显示,汉语依存句法分析性能得到改进,在目前公布的基于转移的分析系统中取得最好成绩,在UAS和LAS评价指标上分别达到87.8%和86.8%的精度,表明所提出的对依存子树局部特征及历史依存弧信息和历史决策动作信息的编码方法,在改进依存分析模型性能方面的有效性。
关键词: 依存句法分析多特征融合编码依存子树TreeLSTM神经网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。