ACMF:基于卷积注意力模型的评分预测研究
商齐1 曾碧卿1,2 王盛玉1 周才东1 曾锋1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

商齐1 曾碧卿1,2 王盛玉1 周才东1 曾锋1,. ACMF:基于卷积注意力模型的评分预测研究[J]. 当代中文学刊,2018.11. DOI:.
摘要:
评分数据稀疏是影响评分预测的主要因素之一。为了解决数据稀疏问题,一些推荐模型利用辅助信息改善评分预测的准确率。然而大多数推荐模型缺乏对辅助信息的深入理解,因此还有很大的提升空间。鉴于卷积神经网络在特征提取方面和注意力机制在特征选择方面的突出表现,该文提出一种融合卷积注意力神经网络(Attention Convolutional Neural Network,ACNN)的概率矩阵分解模型:基于卷积注意力的矩阵分解(Attention Convolutional Model based Matrix Factorization,ACMF),该模型首先使用词嵌入将高维、稀疏的词向量压缩成低维、稠密的特征向量;接着,通过局部注意力层和卷积层学习评论文档的特征;然后,利用用户和物品的潜在模型生成评分预测矩阵;最后计算评分矩阵的均方根误差。在ML-100k、ML-1m、ML-10m、Amazon数据集上的实验结果表明,与当前取得最好预测准确率的PHD模型相比,ACMF模型在预测准确率上分别提高了3.57%、1.25%、0.37%和0.16%。
关键词: 卷积神经网络;注意力机制;评分预测
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。