融合卷积神经网络与层次化注意力网络的中文文本情感倾向性分析
程艳 叶子铭 王明文 张强 张光河
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

程艳 叶子铭 王明文 张强 张光河,. 融合卷积神经网络与层次化注意力网络的中文文本情感倾向性分析[J]. 当代中文学刊,2019.1. DOI:.
摘要:
文本情感倾向性分析是自然语言处理研究领域的一个基础问题。基于深度学习的模型是处理此问题的常用模型。而当前的多数深度学习模型在中文文本情感倾向性分析方面的应用存在两个问题:一是未能充分考虑到文本的层次化结构对情感倾向性判定的重要作用,二是传统的分词技术在处理文本时会产生歧义。该文针对这些问题基于卷积神经网络与层次化注意力网络的优点提出了一种深度学习模型C-HAN(Convolutional Neural Network-based and Hierarchical Attention Network-based Chinese Sentiment Classification Model),先用并行化卷积层学习词向量间的联系与组合形式,再将其结果输入到基本单元为双向循环神经网络的层次化注意力网络中判定情感倾向。实验表明:模型在中文评论数据集上倾向性分类准确率达到92.34%,和现有多个情感分析模型相比有所提升;此外,对于中文文本,选择使用字级别词向量作为原始特征会优于词级别词向量作为原始特征。
关键词: 卷积神经网络;层次化注意力网络;情感倾向性分析;词向量
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。