基于多任务学习的汉语基本篇章单元和主述位联合识别
葛海柱 孔芳
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

葛海柱 孔芳,. 基于多任务学习的汉语基本篇章单元和主述位联合识别[J]. 当代中文学刊,2020.1. DOI:.
摘要:
基本篇章单元(elementary discourse units,EDU)识别是构建篇章结构的基础,对篇章分析意义重大。从篇章衔接性视角来看,篇章话题结构理论认为,每个EDU都由要表达信息的起始点(主位)和传达的新信息(述位)两部分构成。因此,EDU识别与主述位识别任务的关系密切。基于此,该文给出了一个基于多任务学习的汉语基本篇章单元和主述位联合识别方法。该方法利用双向长短时记忆网络和图卷积网络对基本单元进行序列化和结构化拓扑信息的表征,再利用多任务学习框架让两个任务共享参数,借助不同任务间的相关性来提升模型的性能。实验结果表明,基于多任务学习的EDU和主述位识别性能均优于单任务学习模型中各自的性能,其中基本篇章单元识别的F1值达到91.90%,主述位识别的F1值达到85.65%。
关键词: 多任务学习基本篇章单元主位述位
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。