:08:11:11

世纪中文出版社 ——“建设顶级中文期刊”为使命!期待与您同行......
请输入您想了解的内容!
截图后在输入框直接粘贴

请您为我的服务评分:

发送提交
基于带注意力机制CNN的联合知识表示模型
彭敏 姚亚兰 谢倩倩 高望

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

彭敏 姚亚兰 谢倩倩 高望,. 基于带注意力机制CNN的联合知识表示模型[J]. 当代中文学刊,2019.6. DOI:.
摘要:
知识表示学习在自然语言处理领域获得了广泛关注,尤其在实体链指、关系抽取及自动问答等任务上表现优异。然而,大部分已有的表示学习模型仅利用知识库中的结构信息,无法很好地处理新的实体或关联事实极少的实体。为解决该问题,该文提出了引入实体描述信息的联合知识表示模型。该模型先利用卷积神经网络编码实体描述,然后利用注意力机制来选择文本中的有效信息,接着又引入位置向量作为补充信息,最后利用门机制联合结构和文本的向量,形成最终的联合表示。实验表明,该文的模型在链路预测和三元组分类任务上与目前最好的模型性能相近。
关键词: 知识表示学习卷积神经网络注意力机制
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。