基于GMM的文本规则挖掘的粗糙集方法研究
洪壮壮 黄兆华 万仲保 张薇 高梦茜
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

洪壮壮 黄兆华 万仲保 张薇 高梦茜,. 基于GMM的文本规则挖掘的粗糙集方法研究[J]. 当代中文学刊,2020.4. DOI:.
摘要:
领域文本具有结构复杂、相似性高以及动态变化等特点,且存在着连续型与离散型并存的混合数据,这在一定程度上限制了知识发现方法对文本规则的挖掘效率。针对这一问题,该文提出了基于GMM与粗糙集的文本规则挖掘方法。该方法首先根据目标数据的属性类型构造信息表;然后利用高斯混合模型(GMM,Gaussian Mixture Model)聚类算法对连续数据进行聚类划分,依此对数据进行离散化及状态约简,并生成决策表;最后利用粗糙集理论对决策表进行属性约简,通过约简表对决策规则进行提取。实验结果表明:相比于传统的方法,该文方法拥有更高的抽取精度以及较强的属性约简能力,其信息抽取的平均准确率与F1值能够达到95.0%和95.7%。
关键词: 混合数据规则挖掘高斯混合模型粗糙集属性约简决策规则
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。