ResNet结合BiGRU的关系抽取混合模型
唐朝1 诺明花1 胡岩2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

唐朝1 诺明花1 胡岩2,. ResNet结合BiGRU的关系抽取混合模型[J]. 当代中文学刊,2020.4. DOI:.
摘要:
关系抽取主要目的是将非结构化或半结构化描述的自然语言文本转化成结构化数据,其主要负责从文本中识别出实体,抽取实体间的语义关系。就关系抽取任务而言,当前流行的网络结构是仅使用CNN作为编码器,经过多层卷积操作后,对池化的结果进行softmax分类。还有部分工作则使用RNN并结合Attention机制对最后的结果做分类。这些网络结构在远程监督带噪声的关系抽取任务中表现并不理想。该文主要根据ResNet残差块的特性,提出了一种混合模型,它有效融合,ResNet和BiGRU,将带有残差特性的CNN和双向RNN结合起来,最后融入注意力机制来完成基于远程监督的关系抽取任务。实验验证了该混合模型在远程监督的噪声过滤方面的有效性。在NYT-Freebase数据集上,P@N值相比使用单一ResNet提高了2.9%。另外,该文所建混合模型可以很轻易地移植应用到其他NLP任务中。
关键词: 关系抽取;卷积神经网络;递归神经网络;注意力机制
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。