基于QU-NNs的阅读理解描述类问题的解答
谭红叶1,2 刘蓓1 王元龙1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

谭红叶1,2 刘蓓1 王元龙1,. 基于QU-NNs的阅读理解描述类问题的解答[J]. 当代中文学刊,2019.7. DOI:.
摘要:
机器阅读理解是自然语言处理(NLP)领域的一个研究热点,目前大部分的研究是针对答案简短的问题,而具有长答案的问题,如描述类问题是现实世界无法避免的,因此有必要对该类问题进行研究。该文采用QU-NNs模型对阅读理解中描述类问题的解答进行了探索,其框架为嵌入层、编码层、交互层、预测层和答案后处理层。由于该类问题语义概括程度高,所以对问题的理解尤为重要,该文在模型的嵌入层和交互层中分别融入了问题类型和问题主题、问题焦点这三种问题特征,其中问题类型通过卷积神经网络进行识别,问题主题和问题焦点通过句法分析获得,同时采用启发式方法对答案中的噪音和冗余信息进行了识别。在相关数据集上对QU-NNs(Question UnderstandingNeural Networks)模型进行了实验,实验表明加入问题特征和删除无关信息可使结果提高2%~10%。
关键词: 阅读理解描述类问题问题理解神经网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。