基于注意力机制与文本信息的用户关系抽取
赵赟 吴璠 王中卿 李寿山 周国栋
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

赵赟 吴璠 王中卿 李寿山 周国栋,. 基于注意力机制与文本信息的用户关系抽取[J]. 当代中文学刊,2019.8. DOI:.
摘要:
随着社交媒体的发展,用户之间的关系网络对于社交媒体的分析有很大的帮助。因此,该文主要研究用户好友关系检测。以往的关于用户好友关系抽取的研究主要基于社交媒体上的结构化信息,比如其他好友关系,用户的不同属性等。但是,很多时候用户本身并没有大量的好友信息存在,同时也不一定有很多确定的属性。因此,我们希望基于用户发表的文本信息来对用户关系进行预测。不同于以往的潜在好友推荐算法,该文提出了一种基于注意力机制以及长短时记忆网络(long short-term memory,LSTM)的好友关系预测模型,将好友之间的评论分开处理,通过分析用户之间的评论来判断是否具备一定的好友关系。该模型将好友双方信息拼接后的结果作为输入,并将注意力机制应用于LSTM的输出。实验表明,用户之间的评论对于好友关系预测确实有较大的实际意义,该文提出的模型较之于多个基准系统的效果,取得了明显的提升。在不加入任何其它非文本特征的情况下,实验结果的准确率达到了77%。
关键词: 好友判断关系预测社交网络注意力机制
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。