基于混合表示的中文事件检测方法研究
秦彦霞1 王中卿2 郑德权1 张民2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

秦彦霞1 王中卿2 郑德权1 张民2,. 基于混合表示的中文事件检测方法研究[J]. 当代中文学刊,2019.11. DOI:.
摘要:
传统中文事件检测方法采用人工定义的特征表示候选触发词,耗时耗力。基于神经网络的特征学习方法在中英文事件检测任务中得到了验证。现有的基于神经网络的中文事件检测方法初步探索了字信息对解决分词错误的作用。字是中文的最小结构单元和语义表示单元。词语的字符级信息能够提供词语的结构性信息和辅助词语级语义。该文研究了字/词混合神经网络特征对于解决中文事件数据集未登录词问题的作用。采用神经网络模型分别学习词语的词语级表示和字符级表示,进而拼接得到词语的混合表示。实验结果表明,基于字/词混合表示的中文神经网络事件检测模型的F1值比当前最好的模型高2.5%。
关键词: 中文;事件检测;神经网络;混合表示
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。