基于语义分类和描述框架的网络攻击知识抽取研究及其应用
方芳1,2 王亚1 王石1 符建辉1 曹存根1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

方芳1,2 王亚1 王石1 符建辉1 曹存根1,. 基于语义分类和描述框架的网络攻击知识抽取研究及其应用[J]. 当代中文学刊,2019.12. DOI:.
摘要:
随着计算机技术的迅猛发展,自然语言处理成为计算机科学领域与人工智能领域中的一个重要方向,且文本知识获取(knowledge acquisition from text,KAT)是人工智能的重要研究内容。当前对于文本研究,大多采用关键字以及机器学习方法,准确率并不高。该文提出了一种基于语义文法的中文网络攻击事件知识获取方法。首先介绍参考FrameNet构建的语义分类和描述框架,它在现代汉语基本句模分类的基础上进行了扩充和改进。其次,重点介绍了攻击文本中最常见的遭受类语义类的设计和形成过程。然后将语义分类和描述框架应用在"网络安全"领域,形成"网络攻击语义类",并介绍在建立"网络攻击语义类"时遇到的难题,包括文法的设计中对事元的确定、复合句的处理、"的是"结构句型的分析设计、谓词设计等。最后,使用国家某安全部门提供的真实数据进行网络攻击知识抽取,实验表明该方法具有较高的准确率。
关键词: 语义分类和描述框架知识抽取语义文法遭受语义类网络安全知识库
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。