一种基于CW-RNN的多时间尺度序列建模推荐算法
袁涛1 牛树梓2 李会元2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

袁涛1 牛树梓2 李会元2,. 一种基于CW-RNN的多时间尺度序列建模推荐算法[J]. 当代中文学刊,2020.9. DOI:.
摘要:
序列化推荐试图利用用户与物品的历史交互序列,预测下次即将交互的物品。针对序列化推荐中推荐物品依赖于用户的长时间全局兴趣、中时间兴趣还是短时间局部兴趣的不确定性,该文提出了一种基于CW-RNN的多时间尺度序列建模推荐算法。首先,该算法引入CW-RNN层,从用户与物品的历史交互序列中抽取多个时间尺度的用户兴趣特征。然后,通过尺度维卷积来建模对不同时间尺度的用户兴趣特征的依赖,生成多时间尺度用户兴趣特征的统一表示。最后,利用全连接层建模统一的多尺度用户兴趣特征和隐式物品特征的交互关系。在MovieLens-1M和Amazon Movies and TV两个公开数据集上的实验结果表明,相比于现有最优的序列推荐算法,该文提出的算法在准确率上分别提升了3.80%和8.63%。
关键词: 序列推荐多时间尺度动态建模
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。