基于RNN和CNN的蒙汉神经机器翻译研究
包乌格德勒1,2 赵小兵2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

包乌格德勒1,2 赵小兵2,. 基于RNN和CNN的蒙汉神经机器翻译研究[J]. 中文研究,2018.2. DOI:.
摘要:
该文探讨了基于RNN和CNN的蒙汉神经机器翻译模型,分别采用蒙古语的词模型、切分模型和子词模型作为翻译系统的输入信号,并与传统的基于短语的SMT进行了比较分析。实验结果表明,子词模型可以有效地提高RNN NMT和CNN NMT的翻译质量。同时实验结果也表明,基于RNN的蒙汉NMT模型的翻译性能已经超过传统的基于短语的蒙汉SMT模型。
关键词: 循环神经网络卷积神经网络神经机器翻译
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。