文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
基于SVM与fMRI技术对精神分裂症的分类研究
DOI
:
,
PDF
下载:
63
浏览: 520
作者
:
朱亚飞
;
付舒悦
;
杨仕虎
;
姚佩玲
;
谭颖
;
作者单位
:
西南民族大学计算机科学与技术学院
;
关键词
:
SVM
;
PCA
;
精神分裂症
;
fMRI
;
摘要:
精神分裂症是一种常见的重型精神疾病。近年来,非侵入性核磁共振影像技术被广泛应用在精神分裂症的研究。目前,已经有大批的机器学习方法应用在核磁共振影像上,例如:KNN、SVM等。通过构建脑功能连接的方式对数据进行处理。在输入分类器之前,对特征进行归一化处理。归一化后再输入SVM分类器,在线性SVM分类器中,分类准确率最高达到78.5%。与传统的直接输入分类器的结果比较,分类准确率有较好的分类效果。该研究对精神分裂症的研究有一定意义,辅助医生诊断疾病。
投稿
相关文章
应用免疫检查点抑制剂慢性阻塞性肺病治疗的探索
体育课与课余体育活动整合研究
品管圈在提高跌倒高危病人复评率的效果观察及应用
摄食训练食物温度的精准分级对脑卒中吞咽障碍患者的影响研究
论存在函数不能用二次迭代函数表示
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2