基于BP神经网络模型在珊溪水库水华预测中的应用
摘要: 在珊溪水库藻类暴发期间应急监测数据的基础上,建立pH值、高锰酸盐指数、总氮、总磷、叶绿素a数据矩阵。运用MATLAB R2015b GUI可视化界面模块,将应急监测数据样本空间分为训练样本、验证样本、测试样本,建立珊溪水库BP神经网络模型,预测了珊溪水库藻类暴发期间叶绿素a浓度。BP神经网络建模结果显示:输出数据与实测数据相关系数0.978,平均相对误差-0.19%,标准方差18.54%,模型稳定性较好,叶绿素a预测结果符合预期。BP神经网络预测模型为珊溪水库饮用水水源地环境保护提供了科学依据。