基于卷积长短时记忆神经网络的蛋白质二级结构预测
DOI,PDF 下载: 76  浏览: 479 
作者郭延哺1李维华1王兵益2金宸1
摘要:
鉴于不同类型氨基酸的相互作用对蛋白质结构预测的影响不同,文中融合卷积神经网络和长短时记忆神经网络模型,提出卷积长短时记忆神经网络,并应用到蛋白质8类二级结构的预测中.首先基于氨基酸序列的类别信息和氨基酸结构的进化信息表示蛋白质序列,并采用卷积提取氨基酸残基之间的局部相关特征,然后利用双向长短时记忆神经网络提取蛋白质序列内部残基之间的远程相互作用,最后将提取的蛋白质的局部相关特征和远程相互作用用于蛋白质8类二级结构的预测.实验表明,相比基准方法,文中模型提高8类二级结构预测的精度,并具有良好的可扩展性.

版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2