检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
基于局部特征聚类损失和多类特征融合的面部表情识别
DOI:
,
PDF
,
下载:
61
浏览: 389
作者:
王浩 栗永泽 方宝富
;
作者单位:
合肥工业大学计算机与信息学院
;
关键词:
面部表情识别;卷积神经网络;深度学习;局部特征
;
摘要:
在真实世界中,每个个体对表情的表现方式不同.基于上述事实,文中提出局部特征聚类(LFA)损失函数,能够在深度神经网络的训练过程中减小相同类图像之间的差异,扩大不同类图像之间的差异,从而削弱表情的多态性对深度学习方式提取特征的影响.同时,具有丰富表情的局部区域可以更好地表现面部表情特征,所以提出融入LFA损失函数的深度学习网络框架,提取的面部图像的局部特征用于面部表情识别.实验结果表明文中方法在真实世界的RAF数据集及实验室条件下的CK+数据集上的有效性.
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库