文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
大数据中基于混合协同过滤的动态用户个性化推荐
DOI
:
,
PDF
下载:
57
浏览: 500
作者
:
刘珊珊
;
;
;
;
;
作者单位
:
广州华南商贸职业学院
;
关键词
:
大数据
;
协同过滤
;
XGBoost
;
个性化推荐
;
准确率
;
摘要:
为了提高大数据中动态用户个性化推荐的准确性和效率,采用基于混合协同过滤的方法来完成用户感兴趣数据的筛选,从而实现个性化推荐。先将用户数据及项目数据通过协同过滤算法来完成建模并评分,然后结合XGBoost模型的树形结构和正则学习的特点进行预测评分,接着将两种算法混合来求解最优目标函数,得到候选的推荐数据集合。最后通过实例仿真,混合算法精确度高,在大数据平台有较强的适用性。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2