摘要: 针对新闻文本领域,该文提出一种基于查询的自动文本摘要技术,更加有针对性地满足用户信息需求。根据句子的TF-IDF、与查询句的相似度等要素,计算句子权重,并根据句子指示的时间给定不同的时序权重系数,使得最近发生的新闻内容具有更高的权重,最后使用最大边界相关的方法选择摘要句。通过与基于TF-IDF、TextRank、LDA等六种方法的对比,该摘要方法 ROUGE评测指标上优于其他方法。从结合评测结果及摘要示例可以看出,该文提出的方法可以有效地从新闻文档集中摘取核心信息,满足用户查询内容的信息需求。