人工智能研究
人工智能研究
《人工智能研究》系开放获取期刊,主要围绕人工智能领域,关注产业政策,报道研究前沿,传播技术趋势,刊载应用案例,推动成果转化,服务我国制造业转型升级发展。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论人工智能领域内不同方向问题与成果的学术交流平台。

ISSN: 3078-9753

《人工智能研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 基于多视图半监督学习的人体行为识别 下载:382 浏览:390
  • 唐超1 王文剑2 王晓峰1 张琛1 邹乐1 《人工智能研究》 2019年7期
  • 摘要:
    由于人的行为在本质上的复杂性,单一行为特征视图缺乏全面分析人类行为的能力.文中提出基于多视图半监督学习的人体行为识别方法.首先,提出3种不同模态视图数据,用于表征人体动作,即基于RGB模态数据的傅立叶描述子特征视图、基于深度模态数据的时空兴趣点特征视图和基于关节模态数据的关节点投影分布特征视图.然后,使用多视图半监督学习框架建模,充分利用不同视图提供的互补信息,确保基于少量标记和大量未标记数据半监督学习取得更好的分类精度.最后,利用分类器级融合技术并结合3种视图的预测能力,同时有效解决未标记样本置信度评估问题.在公开的人体行为识别数据集上实验表明,采用多个动作特征视图融合的特征表示方法的判别力优于单个动作特征视图,取得有效的人体行为识别性能.
  • 基于改进YOLO和迁移学习的水下鱼类目标实时检测 下载:72 浏览:377
  • 李庆忠 李宜兵 牛炯 《人工智能研究》 2019年7期
  • 摘要:
    为了实现非限制环境中水下机器人基于视频图像的水下鱼类目标快速检测,提出基于改进YOLO和迁移学习的水下鱼类目标实时检测算法.针对YOLO网络的不足,设计适合水下机器人嵌入式系统计算能力的精简YOLO网络(Underwater-YOLO).利用迁移学习方法训练Underwater-YOLO网络,克服海底鱼类已知样本集有限的限制.利用基于限制对比度自适应直方图均衡化的水下图像增强预处理算法,克服水下图像的降质问题.利用基于帧间图像结构相似度的选择性网络前向计算策略,提高视频帧检测速率.实验表明,文中算法能实现在非限制环境下海底鱼类目标的实时检测.相比YOLO,文中算法对海底鱼类小目标和重叠目标具有更好的检测性能.
  • 按风格划分数据的模糊聚类算法 下载:76 浏览:388
  • 沈浩1 王士同2 《人工智能研究》 2019年7期
  • 摘要:
    以K-means和模糊C均值为代表的划分式聚类算法无法有效处理按照风格为标准划分样本的聚类任务.针对此问题,文中提出按风格划分数据的模糊聚类算法.利用风格标准化矩阵表示包含在类簇中样本的风格信息,同时使用逼近标准风格之后的样本计算距离矩阵,并以隶属度表示样本点对于类簇的可代表程度.通过常用的交替优化策略同时优化隶属度矩阵和风格标准化矩阵.文中算法可以有效利用样本的风格信息和样本点与类簇之间的关系信息,在人工数据集和真实数据集上的实验表明算法的有效性.
  • 语义自编码结合关系网络的零样本图像识别算法 下载:76 浏览:394
  • 林克正 李昊天 白婧轩 李骜 ​ 《人工智能研究》 2019年7期
  • 摘要:
    为了解决零样本图像识别中传统模型容易出现投影域移位问题以及提高距离相似度度量的鲁棒性,提出关系网络改进语义自编码器的零样本识别算法.基于语义自编码器构建图像视觉特征和语义向量之间的特征映射,并将重构向量与对应向量真值进行级联后送入神经网络,最终利用输出的标量给出预测类别.实验表明,相比传统距离度量方法,文中算法在AWA、CUB和Image Net-2数据集上的识别率均有所提高,在某些数据集上语义-视觉的投影效果优于反向投影.
  • 利用广义信息熵谱选择的图像分割 下载:76 浏览:383
  • 张大明 张学勇 李璐 刘华勇 《人工智能研究》 2019年7期
  • 摘要:
    谱聚类算法中图上拉普拉斯矩阵的特征向量(谱)决定聚类结果,如何选择谱至关重要.为了解决这一问题,基于广义信息熵,定义谱的区分性、谱的区分有效性和谱的区分度这3个指标.谱的区分性指标用于衡量谱所含聚类信息的显著程度;谱的区分有效性指标用于剔除聚类结果无效的谱;谱的区分度指标用于构建基于贡献力的选择性聚类集成方案.进而提出基于谱选择的谱聚类算法.各种自然图像分割实验表明文中算法简单有效.
加入编委加入审稿人
人工智能研究  期刊指标
出版年份 2018-2025
发文量 672
访问量 127852
下载量 28651
总被引次数 371
影响因子 0.752
为你推荐