请选择 目标期刊

基于深度学习和迁移学习的领域自适应中文分词 下载:30 浏览:410

成于思1 施云涛2 《中文研究》 2019年3期

摘要:
为了提高专业领域中文分词性能,以及弥补专业领域大规模标注语料难以获取的不足,该文提出基于深度学习以及迁移学习的领域自适应分词方法。首先,构建包含词典特征的基于深度学习的双向长短期记忆条件随机场(BI-LSTM-CRF)分词模型,在通用领域分词语料上训练得到模型参数;接着,以建设工程法律领域文本作为小规模分词训练语料,对通用领域语料的BI-LSTM-CRF分词模型进行参数微调,同时在模型的词典特征中加入领域词典。实验结果表明,迁移学习减少领域分词模型的迭代次数,同时,与通用领域的BI-LSTM-CRF模型相比,该文提出的分词方法在工程法律领域的分词结果F1值提高了7.02%,与预测时加入领域词典的BI-LSTM-CRF模型相比,分词结果的F1值提高了4.22%。该文提出的分词模型可以减少分词的领域训练语料的标注,同时实现分词模型跨领域的迁移。

基于联合学习的跨领域法律文书中文分词方法 下载:32 浏览:317

江明奇 严倩 李寿山 《中文研究》 2019年3期

摘要:
中文分词任务是自然语言处理的一项基本任务。但基于统计的中文分词方法需要大规模的训练样本,且拥有较差的领域适应性。然而,法律文书涉及众多领域,对大量的语料进行标注需要耗费大量的人力、物力。针对该问题,该文提出了一种基于联合学习的跨领域中文分词方法,该方法通过联合学习将大量的源领域样本辅助目标领域的分词,从而提升分词性能。实验结果表明,在目标领域标注样本较少的条件下,该文方法的中文分词性能明显优于传统方法。

基于膨胀卷积神经网络模型的中文分词方法 下载:26 浏览:249

王星 李超 陈吉 《中文研究》 2019年3期

摘要:
目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练,能够更好理解语义信息并提高计算速度。基于Bakeoff 2005语料库的4个数据集设计实验,与双向长短时记忆网络模型的中文分词方法做对比,实验表明该文提出的模型取得了更好的分词效果,并具有更快的计算速度。

采用Stack-Tree LSTM的汉语一体化依存分析模型 下载:41 浏览:382

刘航 刘明童 张玉洁 徐金安 陈钰枫 《当代中文学刊》 2019年3期

摘要:
在汉语一体化依存分析中,如何利用分词、词性标注和句法分析的中间结果作为分析特征成为核心问题,也是三个任务相互制约协调、共同提高性能的关键所在。目前无论基于特征工程的方法还是基于深度学习的方法尚无法充分利用分析过程中依存子树的完整信息,而依存子树作为中间结果的主要成分对三个任务的后续分析具有重要的指导意义。该文在基于转移的依存分析框架下,提出Stack-Tree LSTM依存子树编码方法,通过对分析栈中所有依存子树的有效建模,获取任意时刻的依存子树的完整信息作为特征参与转移动作决策。利用该编码方式提出词性特征使用方法,融合N-gram特征构建汉语一体化依存分析神经网络模型。最后在宾州汉语树库上进行了验证实验,并与已有方法进行了比较。实验结果显示:该文提出的模型在分词、词性标注和依存分析任务上的性能非常接近特征工程最好的结果,并且均超过已有的一体化依存分析神经网络模型。

基于Lattice-LSTM的多粒度中文分词 下载:37 浏览:429

张文静1,2 张惠蒙1,2 杨麟儿1,2 荀恩东1,2 《当代中文学刊》 2019年3期

摘要:
中文分词是中文信息处理领域中的一项关键基础技术,而多粒度分词是中文分词领域较新的研究方向。针对多粒度中文分词任务,该文提出一种基于Lattice-LSTM的多粒度中文分词模型,在传统基于字的多粒度中文分词模型基础上,加入了多分词粒度的词典信息。与传统模型相比,所提出的模型在网格结构的辅助下,对不同粒度的分词标准都有较强的捕捉能力,且不局限于单一的分词标准。实验表明,该文提出的方法在多粒度中文分词方向取得了目前最好的结果。

中文分词模型在中医病症语义理解中的研究与应用 下载:53 浏览:401

许林涛 叶欣欣 裴成飞 吴荣士 《软件工程研究》 2020年9期

摘要:
中医临床记录的病症内容是中医医师进行诊断的重要依据。由于中文表达形式的多样性与复杂性,如何从这些病症内容中进行标准化四诊信息的提取对于中医证候分析具有重要的研究价值。本文在充分分析各种中文分词算法的基础上,选择将最大正向匹配分词算法应用于中医临床病症内容中的四诊信息语义理解,构建的中医四诊语义模型在100个实际病例的四诊信息提取,再对最大分词数进行变量控制,得出最大分词数为5时得出的准确率和召回率最高。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享