检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
ResNet结合BiGRU的关系抽取混合模型
下载:
34
浏览:
312
唐朝1 诺明花1 胡岩2
《当代中文学刊》
2020年4期
摘要:
关系抽取主要目的是将非结构化或半结构化描述的自然语言文本转化成结构化数据,其主要负责从文本中识别出实体,抽取实体间的语义关系。就关系抽取任务而言,当前流行的网络结构是仅使用CNN作为编码器,经过多层卷积操作后,对池化的结果进行softmax分类。还有部分工作则使用RNN并结合Attention机制对最后的结果做分类。这些网络结构在远程监督带噪声的关系抽取任务中表现并不理想。该文主要根据ResNet残差块的特性,提出了一种混合模型,它有效融合,ResNet和BiGRU,将带有残差特性的CNN和双向RNN结合起来,最后融入注意力机制来完成基于远程监督的关系抽取任务。实验验证了该混合模型在远程监督的噪声过滤方面的有效性。在NYT-Freebase数据集上,P@N值相比使用单一ResNet提高了2.9%。另外,该文所建混合模型可以很轻易地移植应用到其他NLP任务中。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享