请选择 目标期刊

多维项目反应理论补偿性模型参数估计:基于广义回归神经网络集合 下载:52 浏览:353

王鹏1 孟维璇1 朱干成1 张登浩2,3 张利会1 董一萱1 司英栋1 《心理学研究》 2019年7期

摘要:
运用广义回归神经网络(GRNN)方法对小样本多维项目反应理论(MIRT)补偿性模型的项目参数进行估计,尝试解决传统参数估计方法样本数量要求较大的问题。MIRT双参数Logistic补偿模型被设置为二级计分的二维模型。首先,模拟二维能力参数、项目参数值与考生作答矩阵。其次,把通过主成分分析得到的前两个因子在每个题目上的载荷作为区分度的初始值以及题目通过率作为难度的初始值,这两个指标的初始值作为神经网络的输入。集成100个神经网络,其输出值的均值作为MIRT的项目参数估计值。最后,设置2×2种(能力相关水平:0.3和0.7;两种估计方法:GRNN和MCMC方法)实验处理,对GRNN和MCMC估计方法的返真性进行比较。结果表明,小样本的情况下,基于GRNN集成方法的参数估计结果优于MCMC方法。

基于回归神经网络的沧州市水资源承载能力评价 下载:69 浏览:471

卞海彬 《水资源研究进展》 2019年2期

摘要:
本文以沧州市为例,结合水资源承载力内涵特征及最严格管理制度建立了评价指标体系,然后基于回归神经网络(GRNN)模型构建了评价模型,通过对比模糊综合评价结果验证了GRNN模型的准确性与可适用性。结果显示:所建立的评价指标体系能够客观、科学地反映研究区域水资源状况。沧州市水资源承载力呈现出逐渐上升的变化趋势,这可能与该区域水资源保护意识转变、产业结构调整和经济模式转型等因素相关。

基于混合改进GSO与GRNN并行集成学习模型 下载:82 浏览:401

简书强1 倪志伟2 李敬明3 朱旭辉2 倪丽萍2 《人工智能研究》 2019年6期

摘要:
针对萤火虫群优化算法(GSO)不稳定、收敛速度较慢与收敛精度较低等问题和广义回归神经网络(GRNN)的网络结构导致预测误差的特性,提出基于混合改进萤火虫群算法与广义回归神经网络并行集成学习模型,应用于雾霾预测.首先构建融合多种搜索策略的混合改进萤火虫群优化算法(HIGSO),并使用标准测试函数验证算法性能.然后结合HIGSO与引入扰动因子的GRNN模型,建立并行集成学习模型,并通过UCI标准数据集验证模型的有效性与可行性.最后将模型应用于北京、上海和广州地区的雾霾预测,进一步验证模型在雾霾预测中的性能.

基于MFOA-GRNN模型的年电力负荷预测 下载:79 浏览:473

李冬辉 尹海燕 郑博文 《电网技术研究》 2018年9期

摘要:
精确的年电力负荷预测为电力建设和电网运行提供可靠的指导。受多种因素的影响,年电力负荷曲线呈现出非线性特性,因此年电力负荷预测问题的解决需要建立在非线性模型的基础之上。广义回归神经网络(GRNN)已被证明在处理非线性问题上是非常有效的。该网络只有一个扩展参数,如何确定适当的扩展参数是使用GRNN进行预测的关键点。提出了一种将多种群的果蝇优化算法(MFOA)和GRNN相结合的混合年电力负荷预测模型,用以解决上述问题。其中,MFOA用作为GRNN电力负荷预测模型选择适当的扩展参数。最后通过模拟实验数据分析,MFOA-GRNN模型的年电力负荷预测平均绝对百分比误差为0.510%,均方误差为0.281。并且将其结果与差分进化的支持向量机模型(DE-SVM)、粒子群优化的GRNN模型(PSO-GRNN)、以及果蝇优化的GRNN模型(FOA-GRNN)的预测结果进行了比较。最终得出,文中所提出的MFOA-GRNN模型在年电力负荷预测中的预测性能优于上述3种模型。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享